태그 보관물: normal-distribution

normal-distribution

두 개의 다변량 가우스 간의 KL 분기 분포를 가정하여 KL 발산 공식을 도출하는

두 개의 다변량 정규 분포를 가정하여 KL 발산 공식을 도출하는 데 문제가 있습니다. 일 변량 사례를 상당히 쉽게 수행했습니다. 그러나 수학 통계를 취한 지 꽤 오래되었으므로 다변량 사례로 확장하는 데 문제가 있습니다. 나는 단순한 것을 놓치고 있다고 확신합니다.

여기 내가 가진 것이 있습니다 …

q 가 각각 평균 μ 1μ 2 및 분산 Σ 1Σ 2를 갖는 정규 분포의 pdf 라고 가정합니다 . q 에서 p 까지의 Kullback-Leibler 거리는 다음과 같습니다.

p

q

μ1

μ2

Σ1

Σ2

q

p

는 두 개의 다변량 법선에 대해 다음과 같습니다.

[log(p(x))log(q(x))] p(x) dx

12[log|Σ2||Σ1|d+Tr(Σ21Σ1)+(μ2μ1)TΣ21(μ2μ1)]

이 proof 와 같은 논리에 따라 붙어 있기 전에 여기에 도착합니다.

=[d2log|Σ2||Σ1|+12((xμ2)TΣ21(xμ2)(xμ1)TΣ21(xμ1))]×p(x)dx

=E[d2log|Σ2||Σ1|+12((xμ2)TΣ21(xμ2)(xμ1)TΣ21(xμ1))]

트레이스 트릭 을 구현해야한다고 생각 하지만 그 이후에 무엇을 해야할지 모르겠습니다. 올바른 길로 되돌아가는 데 도움이되는 힌트가 있으면 감사하겠습니다!



답변

약간의 수정으로 시작한 부분부터 시작하여

KL=[12log|Σ2||Σ1|12(xμ1)TΣ11(xμ1)+12(xμ2)TΣ21(xμ2)]×p(x)dx=12log|Σ2||Σ1|12tr {E[(xμ1)(xμ1)T] Σ11}+12E[(xμ2)TΣ21(xμ2)]=12log|Σ2||Σ1|12tr {Id}+12(μ1μ2)TΣ21(μ1μ2)+12tr{Σ21Σ1}=12[log|Σ2||Σ1|d+tr{Σ21Σ1}+(μ2μ1)TΣ21(μ2μ1)].

Matrix Cookbook의 섹션 8.2 에서 몇 가지 속성을 사용했습니다 .


답변