태그 보관물: r

r

QR 분해 이해 ‘C’, ‘C’, ‘C’, ‘C’, ‘C’, ‘A’,

나는 더 많은 것을 이해하려고 노력한 예제 (R)를 가지고 있습니다. 선형 모델을 만들기 위해 Limma를 사용하고 있으며 폴드 변경 계산에서 단계별로 어떤 일이 일어나고 있는지 이해하려고합니다. 나는 주로 계수 계산에 어떤 일이 발생하는지 알아 내려고 노력하고 있습니다. 내가 알아낼 수있는 것에서 QR 분해는 계수를 얻는 데 사용되므로 본질적으로 계산중인 방정식 또는 qr ()의 소스 코드를 단계별로 볼 수있는 설명이나 방법을 찾고 있습니다. R 자신을 추적합니다.

다음 데이터 사용 :

expression_data <- c(1.27135202935009, 1.41816160331787, 1.2572772420417, 1.70943398046296, 1.30290218641586, 0.632660015122616, 1.73084258791384, 0.863826352944684, 0.62481665344628, 0.356064235030147, 1.31542028558644, 0.30549909383238, 0.464963176430548, 0.132181421105667, -0.284799809563931, 0.216198538884642, -0.0841133304341238, -0.00184472290008803, -0.0924271878885008, -0.340291804468472, -0.236829711453303, 0.0529690806587626, 0.16321956624511, -0.310513510587778, -0.12970035111176, -0.126398635780533, 0.152550803185228, -0.458542514769473, 0.00243517688116406, -0.0190192219685527, 0.199329876859774, 0.0493831375210439, -0.30903829000185, -0.289604319193543, -0.110019942085281, -0.220289950537685, 0.0680403723818882, -0.210977291862137, 0.253649629045288, 0.0740109953273042, 0.115109148186167, 0.187043445057404, 0.705155251555554, 0.105479342752451, 0.344672919872447, 0.303316487542805, 0.332595721664644, 0.0512213943473417, 0.440756755046719, 0.091642538588249, 0.477236022595909, 0.109140019847968, 0.685001267317616, 0.183154080053337, 0.314190891668279, -0.123285017407119, 0.603094973500324, 1.53723917249845, 0.180518835745199, 1.5520102749957, -0.339656677699664, 0.888791974821514, 0.321402618155527, 1.31133008668306, 0.287587853884556, -0.513896569786498, 1.01400498573403, -0.145552182640197, -0.0466811491949621, 1.34418631328095, -0.188666887863983, 0.920227741574566, -0.0182196762358299, 1.18398082848213, 0.0680539755381465, 0.389472802053599, 1.14920099633956, 1.35363045061024, -0.0400907708395635, 1.14405154287124, 0.365672853509181, -0.0742688460368051, 1.60927415300638, -0.0312210890874907, -0.302097025523754, 0.214897201115632, 2.029775196118, 1.46210810601113, -0.126836819148653, -0.0799005522761045, 0.958505775644153, -0.209758749029421, 0.273568395649965, 0.488150388217536, -0.230312627718208, -0.0115780974342431, 0.351708198671371, 0.11803520077305, -0.201488605868396, 0.0814169684941098, 1.32266103732873, 1.9077004570343, 1.34748531668521, 1.37847539147601, 1.85761827653095, 1.11327229058024, 1.21377936983249, 1.167867701785, 1.3119314966728, 1.01502530573911, 1.22109375841952, 1.23026951795161, 1.30638557237133, 1.02569437924906, 0.812852833149196) 

treatment <- c('A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'A', 'B', 'A', 'C', 'A', 'C', 'A', 'B', 'C', 'B', 'C', 'C', 'A', 'C', 'A', 'B', 'A', 'C', 'B', 'B', 'A', 'C', 'A', 'C', 'C', 'A', 'C', 'B', 'C', 'A', 'A', 'B', 'C', 'A', 'C', 'B', 'B', 'C', 'C', 'B', 'B', 'C', 'C', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A')

variation <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

… 그리고 다음 모델 디자인

design               <- model.matrix(~0 + factor(treatment,
                                                 levels=unique(treatment)) +
                                          factor(variation))
colnames(design)     <- c(unique(treatment),
                          paste0("b",
                                 unique(variation)[-1]))
#expression_data consists of more than the data given. The data given is just one row from the object
fit                  <- lmFit((expression_data), design)

cont_mat             <- makeContrasts(B-A,
                                      levels=design)
fit2                 <- contrasts.fit(fit,
                                      contrasts=cont_mat)
fit2                 <- eBayes(fit2)

-0.8709646의 폴드 변경을 제공합니다.

계수 얻기는 다음을 통해 수행 할 수 있습니다.

qr.solve(design, expression_data)

그런 다음 접기의 변화를 얻는 것은 BA 의 간단한 사례입니다 .

이제 나를 당황스럽게하는 비트는 qr.solve실제로 작동 하는 방식이며 qr함수를 호출 하지만 소스를 찾을 수없는 것 같습니다.

qr 분해에 대한 좋은 설명이나 계수를 도출하기 위해 무슨 일이 일어나고 있는지 정확하게 추적 할 수있는 방법이 있습니까?

도움을 주셔서 감사합니다!



답변

OLS 추정값을 얻기위한 절차로서 QR 분해에 대한 아이디어는 이미 @MatthewDrury의 게시물에 설명되어 있습니다.

함수의 소스 코드는 qrFortran으로 작성되었으며 따르기가 어려울 수 있습니다. 여기에서는 OLS에 맞는 모델의 주요 결과를 재현하는 최소 구현을 보여줍니다. 바라건대 단계가 더 쉬워지기를 바랍니다.

엑스

아르 자형

엑스=아르 자형

엑스엑스β^=엑스와이

아르 자형아르 자형β^=아르 자형와이.

아르 자형1

(1)아르 자형β^=와이.

아르 자형

β^

아르 자형

아르 자형

와이

와이

QR.regression <- function(y, X)
{
  nr <- length(y)
  nc <- NCOL(X)

  # Householder transformations
  for (j in seq_len(nc))
  {
    id <- seq.int(j, nr)
    sigma <- sum(X[id,j]^2)
    s <- sqrt(sigma)
    diag_ej <- X[j,j]
    gamma <- 1.0 / (sigma + abs(s * diag_ej))
    kappa <- if (diag_ej < 0) s else -s
    X[j,j] <- X[j,j] - kappa
    if (j < nc)
    for (k in seq.int(j+1, nc))
    {
      yPrime <- sum(X[id,j] * X[id,k]) * gamma
      X[id,k] <- X[id,k] - X[id,j] * yPrime
    }

    yPrime <- sum(X[id,j] * y[id]) * gamma
    y[id] <- y[id] - X[id,j] * yPrime

    X[j,j] <- kappa

  } # end Householder

  # residual sum of squares
  rss <- sum(y[seq.int(nc+1, nr)]^2)

  # Backsolve
  beta <- rep(NA, nc)
  for (j in seq.int(nc, 1))
  {
    beta[j] <- y[j]
    if (j < nc)
    for (i in seq.int(j+1, nc))
      beta[j] <- beta[j] - X[j,i] * beta[i]
    beta[j] <- beta[j] / X[j,j]
  }

  # set zeros in the lower triangular side of X (which stores) 
  # not really necessary, this is just to return R for illustration
  for (i in seq_len(ncol(X)))
    X[seq.int(i+1, nr),i] <- 0

  list(R=X[1:nc,1:nc], y=y, beta=beta, rss=rss)
}

동일한 추정치 lm가 얻어 졌는지 확인할 수 있습니다 .

# benchmark results
fit <- lm(expression_data ~ 0+design)
# OLS by QR decomposition
y <- expression_data
X <- design
res <- QR.regression(y, X)
res$beta
# [1]  1.43235881  0.56139421  0.07744044 -0.15611038 -0.15021796    
all.equal(res$beta, coef(fit), check.attributes=FALSE)
# [1] TRUE
all.equal(res$rss, sum(residuals(fit)^2))
# [1] TRUE

Q <- X %*% solve(res$R)
round(crossprod(Q), 3)
#   1 2 3 4 5
# 1 1 0 0 0 0
# 2 0 1 0 0 0
# 3 0 0 1 0 0
# 4 0 0 0 1 0
# 5 0 0 0 0 1

잔차는로 구할 수 있습니다 y - X %*% res$beta.


참고 문헌

DSG Pollock (1999)
시계열 분석, 신호 처리 및 역학 핸드북 , Academic Press.


답변