태그 보관물: expected-value

expected-value

경험적 평균이 값을 초과 할 것으로 예상되는 횟수 , 2 ,

대해 의 iid 랜덤 변수 시퀀스가 ​​주어지면 , 경험적 평균 의 예상 횟수를 제한하려고합니다. 는 샘플을 계속 추출함에 따라 값을 초과합니다 .
i = 1 , 2 , . . , n 1

Xi∈[0,1]

i=1,2,...,n

c0T d e f = n j=1P({ 1

1n∑i=1nXi

c≥0

T=def∑j=1nP({1j∑i=1jXi≥c})

일부 대해 라고 가정 하면 Hoeffding의 부등식 을 사용 하여a > 0

c=a+E[X]

a>0

T≤∑j=1ne−2ja2=1−e−2a2ne2a2−1

어느 것이 좋을지 모르지만 실제로는 꽤 느슨한 범위입니다.이 값을 묶는 더 좋은 방법이 있습니까? 다른 이벤트 (각 )가 명확하게 독립적이지 않기 때문에이 의존성을 악용 할 수있는 방법을 모릅니다 . 또한 가 평균보다 크다는 제한을 제거하는 것이 좋습니다 .c

j

c

편집 : Markov의 불평등 을 다음과 같이 사용하면 가 평균보다 큰 제한을 제거 할 수 있습니다 .

c

TcE[X]

T≤∑j=1n1jE[X]c=E[X]Hnc


보다 일반적이지만 위의 경계보다 훨씬 나쁘지만 은 .

T

c≤E[X]



답변

이것은 다소 손으로 만든 접근 방식이며 이에 대한 의견을 보내 주셔서 감사합니다. 비판하는 사람들이 가장 도움이됩니다. OP가 올바르게 이해하면 OP는 표본 평균 계산합니다 . 여기서 각 표본에는 새 rv의 이전 표본 +1 관측치가 포함됩니다. 는 각 표본 평균의 분포를 나타냅니다 . 그럼 우리는 쓸 수 있습니다 Fj

x¯j

Fj

T=def∑j=1n(1−Fj(c))=n−∑j=1nFj(c)

표본 평균 의 분포가 거의 정상적인 표본 크기 을 고려한 다음 표시하십시오 . 그럼 우리는 쓸 수 있습니다G

m

G^

T=n−∑j=1mFj(c)−∑j=m+1nG^j(c)<n−∑j=m+1nG^j(c)

해결 우리가 구

여기서 통상 표준 인 cdf, 는 iid 프로세스의 표준 편차이고 는 평균입니다. 바운드에 삽입하고 다시 정렬

G^j(c)

G^j(c)=1−Φ(jσ(μ−c))

Φ

σ

μ

T<m+∑j=m+1nΦ(jσ(−a))

이 한계는 프로세스의 분산에 따라 달라집니다. 이것이 질문에 제시된 것보다 더 나은 범위입니까? 이것은 표본 평균의 분포가 "거의 정상"이되는 방법이 얼마나 "빠른지"에 달려 있습니다. 수치 예제를 제공하기 위해, 가정 이 . 또한 랜덤 변수가 에서 균일하다고 가정하십시오 . 그런 다음 및 입니다. 평균에서 10 % 편차를 고려하십시오 (예 : 설정) . 그런 다음 : 이미 경우 제안하는 범위 ( 의미 가 있음)가 더 엄격 해집니다. 들면 Hoeffding 바인드

m=30

[0,1]

σ=112

μ=12

a=0.05

n=34

n>30

n=100

78.5

내가 제안하는 경계는 입니다. Hoeffding는 수렴을 바인딩 (가) 나는 것을 제안 바인딩 동안 당신이 증가하면 20 % 편차 : 두 경계 사이의 차이는 감소하지만 계속 표시 의 Hoeffding가 수렴 바인딩 반면, 경계 나는 수렴한다고 제안한다 (즉, 일반 cdfs의 합은 전체 경계에 거의 기여하지 않는다).
좀 더 일반적으로, 우리는 대해 Hoeffding 바운드가

36.2

≈199.5

≈38.5

a

a=0.1

49.5

30.5


n→∞

Hb→1e2a2−1


내 바인딩되는 동안

Ab→m

작은 값 때문에 (오히려 관심의 경우) 다수가되고, 그 경우 여전히 존재한다 샘플 등이더라도, 밀폐 그것을 능가 할 수는 서서히 표본 평균 수렴 분포 정규 분포.

a

Hb

Ab

답변