내 질문
-
요인 분석 (또는 PCA의 구성 요소)에서 요인의 회전을 수행하는 직관적 인 이유는 무엇입니까?
변수가 최상위 구성 요소 (또는 요인)에 거의 똑같이로드되면 구성 요소를 구별하기가 어렵다는 것을 이해합니다. 따라서이 경우 회전을 사용하여 구성 요소를 더 잘 차별화 할 수 있습니다. 이 올바른지?
-
회전을하면 어떤 결과가 발생합니까? 이것은 어떤 영향을 미칩니 까?
-
적절한 회전을 선택하는 방법은 무엇입니까? 직교 회전 및 비스듬한 회전이 있습니다. 이 중에서 선택하는 방법과이 선택의 의미는 무엇입니까?
최소한의 수학 방정식으로 직관적으로 설명하십시오. 분산 된 답변 중 수학이 무거웠지만 직관적 인 이유와 규칙에 대해 더 많이 찾고 있습니다.
답변
-
회전 사유 . 요인 분석에서 추출 된 요인 (또는 PCA를 요인 분석 기술로 사용하려는 경우 PCA의 구성 요소)을 해석하기 위해 회전이 수행됩니다. 당신의 이해를 설명 할 때 당신은 옳습니다. 로딩 매트릭스의 일부 구조를 추구하여 회전이 이루어지며, 이는 단순 구조 라고 할 수 있습니다 . 다른 요소가 다른 변수를로드하는 경향이있는 경우입니다 1
1. [변수가 요인을로드하는 것보다 “인자에 변수를로드하는”이라고 말하는 것이 더 옳다고 생각합니다. 왜냐하면 “변수”가 “in”또는 “뒤에”있는 요인이기 때문에 상관이있을 수 있습니다. 어떤 의미에서 전형적인 간단한 구조는 상관 변수의 “클러스터”가 나타나는 곳입니다. 그런 다음 요인에 의해 충분히로드 된 변수의 의미의 교집합 에있는 의미 로 요인을 해석합니다 . 따라서 다른 의미를 갖기 위해서는 요인이 변수를 차등 적으로로드해야합니다. 경험상 요인은 최소한 3 개의 변수를 적절히로드해야한다는 것입니다.
-
결과 . 회전은 요인의 공간에서 서로에 대한 변수의 위치를 변경하지 않습니다. 즉, 변수 간의 상관 관계가 유지됩니다. 변경된 것은 가변 벡터의 종점 좌표를 인자 축에 대한 좌표입니다.-하중 (자세한 내용은 “부하 플롯”및 “바이 플롯”에 대해서는이 사이트를 검색하십시오) 2 . 로딩 행렬 의 직교 회전 후 , 요인 분산이 변경되지만, 요인은 상관되지 않은 상태로 유지되며 가변적 인 커뮤니티는 유지됩니다.
2에서 경사 회전 요소는 그 명확한 “단순한 구조”를 생산한다면 자신의 uncorrelatedness을 잃을 수 있습니다. 그러나 상관 요인에 대한 해석은 더 어려운 기술입니다. 한 요인에서 의미를 도출하여 서로 관련된 다른 요인의 의미를 오염시키지 않기 때문입니다. 즉, 요인을 하나씩 해석하지 말고 병행하여 해석해야한다는 것을 의미합니다. 비스듬한 회전은 패턴 행렬
피와 구조 행렬
에스대신에 하나의 행렬 대신 두 개의 행렬의 하중을 남깁니다 . (
에스=피기음, 여기서
기음는 요인들 사이의 상관 행렬이며;
기음=큐‘큐여기서
큐는 경사 회전의 행렬입니다.
에스=에이큐, 여기서
에이는 회전 전의 로딩 행렬입니다.) 패턴 행렬은 요인이 변수를 예측하는 회귀 가중치 행렬이며, 구조 행렬은 상관 관계입니다. 요인과 변수 간의 공분산). 대부분의 경우 우리 는 이러한 계수가 변수에 대한 요인의 고유 한 개별 투자를 나타 내기 때문에 패턴 로딩으로 요인을 해석 합니다. 비스듬한 회전은 가변적 인 커뮤니티를 유지하지만, 커뮤니티는 더 이상
피또는 S 의 행 제곱의 합과 같지 않습니다.
에스. 또한, 요인이 서로 관련되어 있기 때문에 분산이 부분적으로 중첩됩니다 3 .
삼물론 직교 및 비스듬한 회전 모두 계산하려는 요소 / 구성 요소 점수에 영향을줍니다 (이 사이트에서 “요소 점수”를 검색하십시오). 실제로 회전 은 추출 직후에 얻은 요소 이외의 다른 요소를 제공합니다 4 . 변수와 상관 관계에 대한 예측 능력을 상속 받지만 사용자와는 다른 의미를 갖습니다. 회전 후에는 “이 요소가 그 요소보다 더 중요합니다”라고 말하지 않을 수도 있습니다. PCA와 달리 FA에서는 솔직히 말해서 추출 후에도 거의 말하지 않을 수 있습니다. 이미 “중요”한 것으로 모델링되었습니다.
4 -
선택 . 직교 및 경사 회전에는 여러 가지 형태가 있습니다. 왜? 첫째, “간단한 구조”라는 개념은 공통적이지 않으며 다소 다르게 공식화 될 수 있기 때문입니다. 예를 들어, VARIMAX – 가장 인기 직교 방법 – 각 요소의 부하의 제곱 값 사이의 분산을 최대화하기 위해 시도를; 때때로 사용되는 직교 방법 quartimax 는 변수를 설명하는 데 필요한 요소 수를 최소화하고 종종 “일반 요소”를 생성합니다. 둘째, 다른 회전은 단순한 구조를 제외하고 다른 측면 목표를 목표로합니다. 이 복잡한 주제에 대한 자세한 내용은 다루지 않겠지 만 직접 읽어 보시기 바랍니다.
직교 또는 비스듬한 회전을 선호해야합니까? 직교 인자는 해석하기 쉽고 전체 요인 모델은 통계적으로 더 간단합니다 (직교 예측자는 물론). 그러나 당신은 당신이 발견하고자하는 잠재적 특성에 직교성 을 부과합니다 . 그들이 공부하는 분야에서 서로 관련이 없어야한다고 확신합니까? 그들이 아닌 경우 어떻게? 비스듬한 회전 방법 5
5(각각 자신의 성향을 가지지 만) 요인들이 서로 관련되도록 허용하지만 강제하는 것은 아니며 덜 제한적입니다. 비스듬한 회전이 요인과 약한 상관 관계가 있음을 보여주는 경우 “실제로”그렇게 확신 할 수 있으며 양심이 좋은 직교 회전으로 전환 할 수 있습니다. 리콜 요인이 있음 – 요소, 다른 한편으로는, 매우 상관 관계가있는 경우, 당신이, 심리학 또는에서 인벤토리를 개발하고 특히, 개념적으로 별개의 잠재적 특성에 대한 (부 자연스러운 모양 입니다 자체의 단 변량 특성이 아닌 배치 현상)을 줄이고 더 적은 수의 요인을 추출하거나 소위 2 차 요인을 추출하기 위해 경사 소스를 배치 소스로 사용하는 것이 좋습니다.
1
Thurstone 앞으로 간단한 구조의 다섯 개 이상적인 조건을 가져왔다. 가장 중요한 세 가지는 다음과 같습니다. (1) 각 변수에는 0에 가까운로드가 하나 이상 있어야합니다. (2) 각 인자는 최소m 개의변수에대해 0에 가까운 하중을 가져야합니다 (m은 인자 수임). (3) 각 요인 쌍에 대해, 적어도하나는 0에 가까운 하중을 가지고, 다른 하나는 0에 충분히 가까운m 개의변수가 있습니다. 결과적으로 각 요인 쌍에 대해 하중 그림은 이상적으로 다음과 같아야합니다.
이것은 순전히 탐구 적 FA를위한 것이며, 설문지를 개발하기 위해 FA를 수행하고 재실행하는 경우, 두 가지 요소 만있는 경우 결국 파란색 점을 제외한 모든 점을 삭제하려고합니다. 요인이 두 개 이상인 경우 다른 요인의 적재 그림에 대해 빨간색 점이 파란색이되기를 원할 것입니다.
2
삼
에스
에스
에이
1−아르 자형나는2 기음−1
4
5
(보통) 또는 그것없이. 정규화는 회전시 모든 변수를 동일하게 중요하게 만듭니다.
더 읽을 수있는 몇 가지 스레드 :